Skip to contents

qSIP Data Objects

qsip_data()
qSIP master data class
qsip_source_data()
qSIP source data class
qsip_sample_data()
qSIP sample data class
qsip_feature_data()
qSIP feature table class

qSIP2 EAF Workflow

show_comparison_groups()
Show comparison groups
run_feature_filter()
Filter features in a qSIP data object
run_resampling()
Resample WAD values
run_EAF_calculations()
Calculate EAF values
summarize_EAF_values()
Summarize the observed and resampled EAF values
run_comparison_groups()
Run comparison groups

qSIP2 Growth Workflow

get_N_total_it()
Calculate total abundances at timepoint t
run_growth_calculations()
Run growth calculations
summarize_growth_values()
Summarize growth values

Helper Functions

infer_source_data()
Generate a source data frame from a sample data frame
add_isotopolog_label()
Add isotopolog_label to source data
remove_isotopolog_label()
Remove isotopolog_label from "MISIPified" data
get_all_by_isotope()
Get source_mat_ids meeting certain isotope conditions
get_dataframe
Return the original dataframe from a qsip_feature_data object
get_resample_counts()
Get counts of successful resampling
get_resample_data()
Get dataframe of resampled data
get_feature_ids()
Return the feature_ids in a qsip object
get_filtered_feature_summary()
Return filtering info for a specific feature ID
get_source_mat_ids()
Return the source_mat_ids in a qsip object
get_growth_data()
Get dataframe of resampled growth data
resample_seed()
Seed used in resampling
n_resamples()
Number of resamples
add_gradient_pos_rel_amt()
Add gradient_pos_rel_amt to data
add_taxonomy()
Add a taxonomy table to qSIP abundance data
show_unshared_ids()
Show missing source_mat_ids and sample_ids
is_qsip_data()
Check object is qsip_data type
is_qsip_data_list()
Validate a multi-qsip list object
is_qsip_filtered()
Validate a qsip object has been filtered
is_qsip_resampled()
Validate a qsip object has been resampled
is_qsip_EAF()
Validate a qsip object has EAF values
is_qsip_growth()
Validate a qsip object has been run through growth workflow

Plots and Visualizations

plot_sample_curves()
Plot qSIP sample data density curves
plot_source_wads()
Plot the source WADs by isotope
plot_density_outliers()
Cook's outlier detection on gradient positions vs densities
plot_feature_curves()
Plot qSIP feature data density curves
plot_filter_gradient_position()
Plot the results of filtering features
plot_feature_occurrence()
Plot occurrence of features in samples
plot_successful_resamples()
Plot the number of successful resamples for each feature_id
plot_feature_resamplings()
Plot the resampled EAFs for each feature
plot_EAF_values()
Plot EAF and confidence intervals
plot_growth_values()
Plot growth values

Spike-In Controls

jgi_source_df()
Make a source dataframe from JGI proposal file
jgi_sample_df()
Make a sample dataframe from JGI proposal file
jgi_feature_df()
Make a feature dataframe from a JGI coverage file
fit_regression_model()
Fit regression model to spike-in control data
jgi_normalize_features()
asdf
get_normalized_features()
Get normalized features from jgi_normalize_features

Datasets

example_source_df
Example Source Dataframe
example_sample_df
Example Sample Dataframe
example_feature_df
Example Feature Abundance Dataframe
example_source_object
Example qSIP Source Object
example_sample_object
Example qSIP Sample Object
example_feature_object
Example qSIP Feature Object
example_qsip_object
Example qSIP Object
example_group_dataframe
Example data frame for run_comparison_groups()
example_qsip_growth_object
Example qSIP Growth Object
example_qsip_growth_t0
Example qSIP Time Zero Growth Dataframe